The heterogeneity of the peroxidases in peas was examined by starch-gel electrophoresis. Comparisons were made between tall and dwarf cultivars and among organ systems developed in light and darkness. Each organ had a characteristic isozyme pattern, and the band patterns in corresponding organs from different varieties were far more alike than were the patterns in the different organs within the variety. Ontogenetic changes were marked in all organ systems, principally in the cathodic bands. The effect of light on isozymal patterns was quantitative rather than qualitative, possibly influencing the isoperoxidases secondarily via its effect upon organ physiology and development. (The SC® indicates that this paper has been cited in over 120 publications since 1967.)

Now, more than 15 years later as a senior research professor with about 100 other professors and among or- ganisms and locales have appeared, my research has remained problem oriented. Space does not allow me to spin the connecting threads but only to give a diversity of references. It is hoped that the reader will see that the problems are similar and only organisms and locales have changed. And in science, I believe, the solving of problems is what is really important.

Significant advances were made in the 1970s and 1980s in understanding the role of peroxidases in plant physiology and development. These advances have been supported by a number of studies, including those by: 1. Markert C L & Moller F. Multiple forms of enzymes: tissue, iso- genetic and species specific patterns. Proc. Nat. Acad. Sci. US 49:753-63. 1959. (Cited 98 times.)