The skull consists of a series of functional components, each of which supports or protects specific, and operationally related, soft tissues, termed functional matrices. All skeletal structural attributes reflect the morphogenetically and temporally prior demands of their matrices. The skull consists of a series of functional components, each of which supports or protects specific, and operationally related, soft tissues, termed functional matrices. All skeletal structural attributes reflect the morphogenetically and temporally prior demands of their matrices. The skull consists of a series of functional components, each of which supports or protects specific, and operationally related, soft tissues, termed functional matrices. All skeletal structural attributes reflect the morphogenetically and temporally prior demands of their matrices.

Thirty years ago, the multidisciplinary field of craniology was reinvigorated by two events. The first was significant funding by several National Institutes of Health. The second was something often observed in science: the almost simultaneous development of a new series of concepts, related hypotheses, and experimental verifications, both independently and internationally, by a number of workers. Physical anthropology and craniology were traditional interests of the Department of Anatomy at Columbia University, where I have done all of my work including a doctoral thesis in 1954. In the thesis, I proposed an epigenetic theory of cranial growth regulation and denied any primarily active role to the sutures, explicitly contradicting one of the classical cranio-