The mechanical behavior of the human lung may be described by three simultaneous variables, 'intrapleural' pressure (P), respiratory gas flow (F), and lung volume (V), which can be viewed in a three-dimensional diagram. This provided a unified picture of the interrelated mechanical events during breathing and led to the description of the 'expiratory flow-volume curve.' 

In retrospect, the most useful result of these activities occurred at the outset when one day we were looking at the PFV diagram and noted an obvious and invariant feature of the diagram, namely, the shape of its silhouette projected onto the expiratory half of the flow-volume coordinate plane. We named the perimeter of this projection the 'maximum expiratory flow-volume' (MEFV) curve. This curve represents a plot of the flow maxima of the expiratory isovolume pressure-flow curves versus the corresponding volumes. The MEFV curve is easily obtained from the simultaneous measurement of respiratory flow and lung volume. This measurement requires very little patient cooperation, does not require the measurement of the 'intrapleural' pressure, is invariant in a given subject, and, most importantly, is sensitive to changes inherent to the pulmonary system since the MEFV curve is determined solely by the aerodynamics, conduit geometry, and rheological properties of the intrathoracic pulmonary system. It has become a valuable objective measurement of pulmonary mechanical function with a variety of diagnostic and investigative applications.

Thus there are probably two reasons for the frequent citing of this paper: first, it provided a useful unified analysis of pulmonary mechanical function which facilitated one's ability to conceptualize the interrelated set of mechanical events associated with breathing. Second, it directed attention to the significance of a simple but unique parameter of pulmonary function, the MEFV curve.